About us

About us

Gulliver Biomed was founded in 2018 and builds further on the expertise acquired in the field of immunomodulation. We aim to foster nanobody research in general and bring these powerful tools to the scientific community and private industry at large.

Jan Gettemans


Nanobodies afford many opportunies to the research community. They can reduce inherent problems of reproducibility experienced with conventional antibodies because their cDNAs are obtained following phage panning and they are 10 times smaller compared to regular antibodies. We can provide you with these sophisticated biomaterials for your biochemical, biophysical, pharmaceutical, cell biological, (medical) imaging research needs. Peruse our catalogue or contact us to develop your own personal set of nanobodies and stay on top of research. As you get accustomed to their flexibility, versatility and broad range of applications in vitro and in vivo, nanobodies will inspire you to envisage new uses and boost your work.

Read Science’s May 11 2018 Feature article on nanobodies: Small but mighty.

Or Hidde Ploeghs’ more recent (June 2019) testimonal on nanobody technology in PNAS.


Selected references:

Hebbrecht, T., Van Audenhove, I., Zwaenepoel, O., Verhelle, A. and J. Gettemans. 2017. VCA nanobodies target N-WASp to reduce invadopodium formation and functioning. Plos One 12, e0185076. doi: 10.1371/journal.pone.0185076.

Beghein, E., and J. Gettemans. 2017. Nanobody Technology: A Versatile Toolkit for Microscopic Imaging, Protein-Protein Interaction Analysis, and Protein Function Exploration. Front Immunol. 8:771.

Beghein, E., I. Van Audenhove, O. Zwaenepoel, A. Verhelle, A. De Ganck, and J. Gettemans. 2016. A new survivin tracer tracks, delocalizes and captures endogenous survivin at different subcellular locations and in distinct organelles. Sci Rep. 6:31177.

Bertier, L., C. Boucherie, O. Zwaenepoel, B. Vanloo, M. Van Troys, I. Van Audenhove, and J. Gettemans. 2017. Inhibitory cortactin nanobodies delineate the role of NTA- and SH3-domain-specific functions during invadopodium formation and cancer cell invasion. FASEB J. 31:2460-2476.

Bethuyne, J., S. De Gieter, O. Zwaenepoel, A. Garcia-Pino, K. Durinck, A. Verhelle, G. Hassanzadeh-Ghassabeh, F. Speleman, R. Loris, and J. Gettemans. 2014. A nanobody modulates the p53 transcriptional program without perturbing its functional architecture. Nucleic Acids Res. 42:12928-12938.

De Clercq, S., O. Zwaenepoel, E. Martens, J. Vandekerckhove, A. Guillabert, and J. Gettemans. 2013b. Nanobody-induced perturbation of LFA-1/L-plastin phosphorylation impairs MTOC docking, immune synapse formation and T cell activation. Cell Mol Life Sci. 70:909-922.

Gross, C., V. Wiesmann, S. Millen, M. Kalmer, T. Wittenberg, J. Gettemans, and A.K. Thoma-Kress. 2016. The Tax-Inducible Actin-Bundling Protein Fascin Is Crucial for Release and Cell-to-Cell Transmission of Human T-Cell Leukemia Virus Type 1 (HTLV-1). PLoS Pathog. 12:e1005916.

Van Audenhove, I., C. Boucherie, L. Pieters, O. Zwaenepoel, B. Vanloo, E. Martens, C. Verbrugge, G. Hassanzadeh-Ghassabeh, J. Vandekerckhove, M. Cornelissen, A. De Ganck, and J. Gettemans. 2014. Stratifying fascin and cortactin function in invadopodium formation using inhibitory nanobodies and targeted subcellular delocalization. FASEB J. 28:1805-1818.

Van Audenhove, I., N. Debeuf, C. Boucherie, and J. Gettemans. 2015. Fascin actin bundling controls podosome turnover and disassembly while cortactin is involved in podosome assembly by its SH3 domain in THP-1 macrophages and dendritic cells. Biochim Biophys Acta. 1853:940-952.

Van Audenhove, I., M. Denert, C. Boucherie, L. Pieters, M. Cornelissen, and J. Gettemans. 2016. Fascin Rigidity and L-plastin Flexibility Cooperate in Cancer Cell Invadopodia and Filopodia. J Biol Chem. 291:9148-9160.

Van Audenhove, I., and J. Gettemans. 2016a. Nanobodies as Versatile Tools to Understand, Diagnose, Visualize and Treat Cancer. EBioMedicine. 8:40-48.

Van den Abbeele, A., S. De Clercq, A. De Ganck, V. De Corte, B. Van Loo, S.H. Soror, V. Srinivasan, J. Steyaert, J. Vandekerckhove, and J. Gettemans. 2010. A llama-derived gelsolin single-domain antibody blocks gelsolin-G-actin interaction. Cell Mol Life Sci. 67:1519-1535.

Van Impe, K., J. Bethuyne, S. Cool, F. Impens, D. Ruano-Gallego, O. De Wever, B. Vanloo, M. Van Troys, K. Lambein, C. Boucherie, E. Martens, O. Zwaenepoel, G. Hassanzadeh-Ghassabeh, J. Vandekerckhove, K. Gevaert, L.A. Fernandez, N.N. Sanders, and J. Gettemans. 2013. A nanobody targeting the F-actin capping protein CapG restrains breast cancer metastasis. Breast Cancer Res. 15:R116.

Van Overbeke, W., J. Wongsantichon, I. Everaert, A. Verhelle, O. Zwaenepoel, A. Loonchanta, L.D. Burtnick, A. De Ganck, T. Hochepied, J. Haigh, C. Cuvelier, W. Derave, R.C. Robinson, and J. Gettemans. 2015. An ER-directed gelsolin nanobody targets the first step in amyloid formation in a gelsolin amyloidosis mouse model. Hum Mol Genet. 24:2492-2507.

Verhelle, A., N. Nair, I. Everaert, W. Van Overbeke, L. Supply, O. Zwaenepoel, C. Peleman, J. Van Dorpe, T. Lahoutte, N. Devoogdt, W. Derave, M.K. Chuah, T. VandenDriessche, and J. Gettemans. 2017b. AAV9 delivered bispecific nanobody attenuates amyloid burden in the gelsolin amyloidosis mouse model. Hum Mol Genet.  26(15):3030. doi: 10.1093/hmg/ddx207.